
Privacy Preserving SQL Query
Execution using an Asymmetric
Architecture

Cuong Quoc TO, Benjamin NGUYEN, Philippe PUCHERAL

SMIS project

INRIA Rocquencourt, & University of Versailles St Quentin

Outline

•  Introduction
•  Asymmetric architecture
•  General Protocol and simple solutions
•  Secure solutions
•  Cost model
•  Perspectives

INTRODUCTION

Central servers cannot be trusted
The world of data servers today :
•  Central (powerful) servers = usual platform for data

intensive applications
•  To query distributed users data, this data is uploaded

to the central server, then queried

This data is private and highly sensitive.

Nevertheless…
•  Privacy violations
•  Internal & external attacks on server
•  Low ratio Cost/Benefit of an attack

Can they be trusted ???
Our answer is NO. (if yours is yes, then you can stop

listening to the talk)
Why must users upload their private data ???

Problem Statement

•  Maintain the functionalities of traditional database servers managing private data

while increasing privacy protection (availability, durability, expressivity of SQL
SFWGH queries, scalability of the system, etc.) by taking into account the fact
that central servers are untrusted.

•  Threat model : honest but curious

Several approaches are possible to securely compute queries:

•  Use only a central server (or untrusted components) and use generic (and costly)

algorithms.
•  Use only a central server and develop (complicated and specific) algorithms.
•  Introduce a tangible element of trust, through the use of a trusted component

and develop a generic methodology to execute any centralized algorithm in this
context. ß our approach

Trusted Component

Trust can be given for various reasons, we consider here it is a priori trust.

•  Hardware secure component
•  Social relations
•  Contractual
•  User (physical) control
•  …

We believe that portable secure hardware is a good candidate for a priori
trust.

This talk is about executing SQL queries using such devices, while

maintaining the same functionnalities.

THE ASYMMETRIC ARCHITECTURE

The SMIS Vision : (re)-introducing
Secure Portable Tokens (SPTs)

Properties exhibited by a “Secure Portable Token”
1.  High security:
•  High ratio Cost/Benefit of an attack;
•  Secure against its owner;
2.  Modest computing resources;
3.  Low availability: physically controlled by its owner;

connects and disconnects at it will

Asymmetric Architecture

SSI

SSI

And the querier

•  We assume that the end user is a querier who has specific access control rights
that are given. These rights can depend on the data owner.

•  AC must be enforced i.e. the end user must not obtain any information it is not
allowed to see given the AC rules.

•  The computation must be private i.e. the SSI must not be able to determine the
data that it manages.

•  Data contained and managed by an SPT is assumed to be safe (including vs its
owner).

Threat model

1.  The SSI is the attacker
•  The SSI wants to discover raw data
•  The SSI and Querier do not collude

2.  The querier is the attacker
•  The querier wants to obtain ungranted information
•  The SSI and Querier can collude

If the collusion of SSI and Querier does not bring any additional information to

Querier then Case 2 is the traditional problem studied by AC in databases.

We have studied case 1 for the moment.

GENERAL PROTOCOL

Overview

Computing a query on such an architecture follows 3 steps

1.  The querier broadcasts (credentials, query) couple
2.  Each PDS decides locally whether to participate or not in the query depending

on AC rules and opt-in/opt-out choices.
3.  A distributed protocol is established between participating PDS and SSI such

that the final result can be delivered to the querier.

/!\ Depending on the complexity of the query, the SSI may only store intermediate
results of may play a more active role in the computation

General protection idea

•  All the data stored and managed by the SSI is encrypted.

•  The problem is therefore to protect against frequency based attacks

à Our attack hypothesis : the adversary exploits prior knowledge about data

distribution to infer some of the plaintext values of ciphertexts.

•  « Informal » tradeoff : the more « secure » the encryption, the less operations the
SSI will be able to perform on the encrypted data.

Simple example

Querier : INSEE
Authorized view :

Select function, salary
From users
Where salary > 3000

1.  Query is broadcast to all users
2.  Each user decides whether to answer or not
3.  If a user answers, data is sent encrypted to the SSI using a non deterministic

scheme (to defeat frequency based attacks)
4.  Querier downloads and decrypts the data

Not-so-simple example 1/

Querier : INSEE
Authorized view :

Select function, AVG(salary)
From users

1.  Query is broadcast to all users
2.  Each user decides whether to answer or not
3.  If a user answers, data is sent encrypted to the SSI using a non deterministic

scheme (to defeat frequency based attacks)
4.  Querier downloads and decrypts the data, and /!\ performs the aggregation /!\

This is not an acceptable protocol !

Not-so-simple example 2/

Querier : INSEE
Authorized view :

Select function, AVG(salary)
From users

1.  Query is broadcast to all users
2.  Each user decides whether to answer or not
3.  If a user answers, data is sent encrypted to the SSI using a /!\ deterministic

scheme /!\ and SSI performs grouping of values with the same key
4.  Querier downloads and decrypts the data

This is not an acceptable protocol !

SECURE PROTOCOLS

(1) Random noise solution

Querier : INSEE
Authorized view :

Select function, AVG(salary)
From users

1.  Query is broadcast to all users
2.  Each user decides whether to answer or not
3.  If a user answers, it sends its true tuple and nf false tuples to the SSI using a

deterministic encryption scheme
4.  SSI performs grouping of values with the same key
5.  Querier downloads, decrypts and filters the data

If a sufficient number of fake tuples are added, the distribution is sufficiently
perturbated.

(2) Using non-deterministic encryption and
secure count method

PDS PDS PDS

Supporting Server

…

encrypts its entire tuple
using non-deterministic
encryption

Form partitions (fit resource of a PDS)

Send partitions

Hold partial aggregation (Gij,AGGk)

Querier

(Gij,AGGk) (Gij,AGGk) (Gij,AGGk)

Encrypted non-deterministic

(Gij,AGGk)
(Gij,AGGk)
…
(Gij,AGGk)

partition }

Partitioning Step

Summing Phase:
1.  Decrypt partition
2.  Sum up the partial aggregation
3.  Encrypt new result

Using non-deterministic encryption and
secure count method

•  Strength: encrypted Age and encrypted aggregation of Age using non-deterministic
encryption ð SSI cannot learn anything from this protocol.

•  Weakness: when number of groups G is too large, a PDS cannot download full
aggregation.

(3) Using Nearly Equi-depth Histogram

22

PDS PDS PDS

Supporting Server

…

Age in hashed value
others in non-deterministic encryption

1.  Group the same hashed values of Age
2.  Form partitions associated with groups

Send partitions

1.  Decrypt partitions
2.  Select appropriate tuples
3.  Calculate aggregate value
4.  Encrypt result (E(Agei), E(Sum of Salaryi)]
Note: one partition can contain multiple groups of Age

Querier

Forming nearly equi-depth histogram:
•  Divide Σ tuples/ Σ buckets = average tuples in bucket.
•  Group consecutive frequencies until reaching the average
•  Hash each bucket to a random number
=> each hashed value is corresponds to
multiple cleartext values
Prerequisite : know the distribution of AGE

Group tuples [E(Agei), E(Sum of Salaryi)]
 with the same E(Agei)
Form partitions associated with groups

1.  Decrypt partitions
2.  Calculate aggregate value
3.  Encrypt result (E(Age), E(Sum of Salary)]
Note: this phase, 1 partition contains 1 group of Age

Tool : Using secure count method to
discover dataset distributions

23

PDS PDS PDS

Supporting Server

…

encrypts its Age using
non-deterministic
encryption

Form partitions (fit resource of a PDS)

Send partitions

Hold partial distribution (X1,X2,…Xk),
Xi is the counter of Age=i.

Let every PDSs know the global
distributions of attributes (e.g., Age)
that appear in GROUP BY clause
without leaking this information to SS

(X1,X2,…Xk) (X1,X2,…Xk) (X1,X2,…Xk)

Encrypted non-deterministic

(X1,X2,…Xk)
(X1,X2,…Xk)
…
(X1,X2,…Xk)

partition }

Partitioning Step

Summing Step:
1.  Decrypt partition
2.  Sum up the partial aggregation
3.  Encrypt new result

COST MODEL

Metrics of interest and parameters

•  PPDS : number of PDS participating in the computation of a given phase. This
represents parallelism of the protocol

•  LoadQ : total size of data the PDS and SSI need to process
•  TQ : query response time for contruction and aggregation phases
•  Tlocal : average time spent by each PDS participating in the query

Parameters :
•  Nt : size of the dataset (= number of PDS participating) : 5M to 65M
•  G : number of groups in the agregation : 1 to 106
•  time spent by a PDS to process one tuple (transfer, crypto and agg)
•  Number of PDS participating in each step of the partial aggregation phase
•  Branching factors of the aggregation phase
•  Number of fake tuples
•  Number of groups in each hash
•  …

Parallelism

Resource consumption

Response time

Local Execution Time

Experimental conclusions

CONCLUSION AND FUTURE WORK

Conclusion and future work

•  We propose, analyse and evaluation (using a cost model) various algorithms to
securely compute SQL Group By queries of private user data on an asymmetric
architecture.

•  Full implementation on SPTs is currently ongoing.
•  Conduct real measurements to validate the cost model.
•  Compute theoretical cost bounds (current results are « experimental »)
•  Improve or propose better algorithms.

THANK YOU !

