y 4

(rrzia—

INVENTORS FOR THE DIGITAL WORLD

Privacy Architectures: Reasoning About
Data Minimisation and Integrity

Thibaud Antignac
Daniel Le Métayer

Cappris October 2014

PRIVATICS o,
Inria Rhoéne-Alpes Clt

CITl lab / INSA Lyon




Formal methods for a systematic approach
to privacy by design

® design space for privacy-friendly systems is wide

=) designers need support tools and methods

® privacy properties are complex and may be conflicting

= formal models can help designers to reason and choose

® protocol level contains too many details

=» architecture is the right level of abstraction




Privacy by design

Advocated by lawyers
To care from the early stage
Data minimisation

breeia— Privacy Architectures Oct 9, 2014




Advocated by lawyers

e Soft law
e The Future of Privacy,
Article 29 Working Party position, 2009
e Protecting Consumer Privacy in an Era of Rapid Change,
FTC report, 2012
e Guidelines governing the Protection of Privacy |...],
15(a)(iii) memorandum, OECD recommendation, 2013

e Hard law
e EU General Data Protection Regulation,
European Commission amended proposal as voted by
European Parliament, 2014




To care from the early stage

e prevention rather than cure

e embedded within the entire life cycle
e early design stage
e deployment
® use
¢ final disposal

¢ responsibility by the controller or processor

[Privacy by Design: The 7 Foundational Principles,
Cavoukian, 2009]

[Article 61, EU General Data Protection Regulation,
European Commission amended proposal

as voted by European Parliament, 2014]




Data minimisation

e collection limited to the minimum necessary for the purposes

e only if the purposes could not be fulfilled by processing
information not involving personal data

[Article 5, EU General Data Protection Regulation,
European Commission amended proposal
as voted by European Parliament, 2014]




brzia— Privacy Architectures Oct 9, 2014




Departure from usual approaches

¢ many different privacy-friendly protocol proposals

e empirical process
¢ from the requirements
¢ to an ad-hoc and integrated protocol

¢ need for an intermediary level
¢ to model properties and abstract away the details
¢ to reason about these properties
¢ to cope with conflicting requirements
¢ to justify choices
¢ backed by methods and tools

T ————




Architecture is the right level

e number of fundamental decisions that profoundly affect the
system and its development process

¢ predicting system qualities

¢ early design decisions

¢ defining constraints on an implementation

e supplying a transferable, reusable model

¢ incorporation of independently developed components

[Software Architecture in Practice,
Bass, Clements & Kazman, 2012]
[Software Engineering,

Sommerville, 2010]
&2 —



Privacy architecture

Software Architecture = {Elements, Form, Rationale}

with Elements € {Processing elements,

Data elements,
Connecting elements}

with Form = {Properties,
Relationships}

[Foundations for the Study of Software Architecture,
Perry & Wolf, 1992]

T ————



Privacy architecture

Privacy architecture = {Elements, Form, Rationale}

with Elements € {data subjects, controllers, and processors,

personal and non-personal data,
IT system}

with Form = {processing, collection, and transfer capabilities}

with Rationale = {process, verifications}

T ————



lrnzia— Privacy Architectures Oct 9, 2014




Elements

® agents can

e collect data => hasi (X)
¢ transfer data => receivei; (X)
® process data => compute; (X = (Y, Z))

® agents can also
¢ trust agents => trust;
e verify attestations  => verifAttest; (attest; (X = T))

¢ there are other primitives




Privacy properties

® |s data
e totally disclosed?
¢ not disclosed at all?
e partly disclosed?

® s data
e known correct?
e believed correct?

hasAll; (X)
hasNone; (X)
has©ne; (X)

Ki(X=T)
Bi (X=T)



Attack model and privacy risks

® agents can

e deduce new values => Depi (X, {Y, Z})
for X =1(Y, Z)

e infer new relations => {X=Y,Y=2}-iX=Z

[Deductive Algorithmic Knowledge,
Pucella, 2006]




Inference rules

hasi (X) receiveij (X) computei (X =T)

hasAlli (X) hasAlli (X) has?lli (X)

Depi (X, {Y, Z}) AFhas?i(Y) Al has?li(2)

At has?l (X)




Inference rules

compute; (X = T) verifittest (attest; (X =T))  trust;,

Ki(X=T) Ki (X=T)

X=Y,Y=2Z}=i1X=Z K ((X=Y) K(Y=2)

AFK (X=2)




Integration within the development process

e 3levels
® requirements
e architecture
¢ verification

¢ help the designer
¢ strategies Q&A to choose components
e feedback

e proof trees

e asset for documenting the system




Integration within the development process

.8 00

_ PrivaSci: decision support tool for privacy

~MODIFICATIONS ——

1. Model 2. Primitives

3. Verifications |

-A. Stakeholders

name | | Add |
rB. Variables
name | lindex | lrange | | Add |

-C. Functions

(| inversible? [ | aggregative? | Add |

-D. Service

xt 3 =[F 3 ([xt $|) [ Add |

rE. Requirements

ra. Confidentiality

| B +| | should get none of 3 [ xt &) [ Add |
-b. Integrity

| A +| | should know s | xt=Fxv % | Add |

— VISUALISATIONS ——

1. Model 2. Architecture

3. Proofs |

rStakeholders

{A, B, C}

-Variables
{x_t,
y_t}

rFunctions

{F}

-Service
{x_t=F(x_t)}

rRequirements

{HasAll_A(x_t),
K_A(x_t=F(x_t)),
HasNone_B(x_t)}




Integration within the development process

B T ——— _ PrivaSci: decision support tool for privacy W—— —— -
~MODIFICATIONS - VISUALISATIONS
1. Model nmm 3. Verifications] | 1. Model P Zitdaiiddadi = 3. Proofs

~A. Constraints rSources

ra. Sources {Has_A(y_t)}

A %] meters | yt | | Add |
rb. Computations
A %] computes | x_t=F(x_.) | | Add | -Computations
— {Compute_A(x_t=F(x_t))}

-c. Communications

| +| receives | x_t %] from | A | | Add |

~d. Trusts

| $| trusts | A 3| | Add | ~Trusts

I {}
-B. Choices

-a. Locations of computations

| A 4| computes | x_t=F(x_.t) | | Add |

rCourtesies
-b. Kinds of trusts 0
| K_A(x_t=F(x_t) *| trusted bym_] by courtesyof | A 3| | Add |
accountability

-C. Communications———  Security

-a. Variables performance

. _ rCommunications

| A 3| receives | xt %] from | A 3| [ Add | 0
-b. Courtesies

| A % receives | .. ¢ from | A i | Add |




Integration within the development process

R RN A A M AT M 1] L T R 2 11 U=,
-MODIFICATIONS -VISUALISATIONS
| 1. Model 2. Primitives | 1. Model | 2. Architecture
A. Confidentiality - Confidentiality proof
: : N f.
: | Prove | (| Precompute | ) o proe
HasNone_B(x_t)
rB. Integrity -Integrity proof

| K A(x_t=F(x_t) +| | Prove | (| Precompute | )




brzia— Privacy Architectures Oct 9, 2014




Requirements

e Confidentiality
e the provider only needs the total fee for the bill period

¢ the user needs all the detailed consumption

® Integrity
e the provider must be sure the reported fee is correct

¢ the user must be sure the detailed consumption and the
reported fee are correct

e ——



signature

Architecture

commitment
CONS;¢

zero-knowledge

signature proof

consit >t F(consiy)

> >

homomorphic
commitment

trust [Privacy-friendly smart metering,

Rial & Danezis, 2010]
| 22— —



Architecture . |
recelVeprovider,User

({proofuser (attestmeter (const = CONSY))}, @)

receiveprovider,User

recelVeuser,Meter ({prOOster (fee = Zt F (COnSt)}, fee)

({attestmeter (const = CONSy)}, {const})

hasmeter (CONSt)
verifAttestyse, verifPoofoovider (Proofuser
computemeter (attestveter (cOnst = CONSy))  (attestmeter (cons; = CONSy)))
(COﬂSt CONSt) COmpUteUser VerifPrOOfProvider
(fee = SF (const)) (proofuser (fee = Y+ F (const)))
trustuser,meter

[Privacy-friendly smart metering,

trUStProvider,Meter Rial & Danezis, 2010]
4 Waf—



Verification: confidentiality for the provider

receiveprovider,user ({proofuser (fee = > +F (const)}, fee)

haSA"Provider (fee)

No premises of other rules apply

hasN°"eprqyiger (CONSt)




Verification: integrity for the provider

verifProofb oyider (proofuser (attestmeter (const = CONSt)))  trustprovider,Meter

Kprovider (COnst = CONS;)

verifProolpovider (proofuser (fee = > tF (const)))

Kprovider (fee = Zt F (COnSt))

{const = CONSy, fee = ) tF (const)}= provider fee = > tF (CONSt)
Kprrovider (CONSt = CONSt)  Krrovider (fee = Y tF (const))

Kprovider (fee = Zt F (CONSt))

e ——



lrnzia— Privacy Architectures Oct 9, 2014




Future works

e Other privacy criteria
¢ data retention
e liability

e data weakening

® Privacy patterns




Formal methods for a systematic approach
to privacy by design

® design space for privacy-friendly systems is wide

=) designers need support tools and methods

® privacy properties are complex and may be conflicting

= formal models can help designers to reason and choose

® protocol level contains too many details

=» architecture is the right level of abstraction




Thank you

y 4

(rrzia —

INVENTORS FOR THE DIGITAL WORLD

PRIVATICS

Inria Rhéne-Alpes
CITl lab / INSA Lyon
www.inria.fr



http://www.inria.fr

Formal system: architectural primitives

A :={R}

R ::= Has; (X )
Compute, (X = T)
Verijf roof (Pro)
Spotcheck; ; (Xk, Eq)

S ::= Pro | Att
Pro ::= Proof, ({P})
P ::= Att| Eq

Receive; ; ({S}, {X})
Check; ({Eq})

Verz.ﬁﬁ\ttest (Att)

Trust;. ;

Att ::= Attest; ({Eq})
Eq ::==T1 Rel T
Rel::= =|<|>|<|>

Iﬁw—



Formal system: properties

¢ := Has" (X ( ) | Has; °™° (X ( ) | Has;™¢ (X)

| Ki (Eq) | Bi (Eq) [ 1 A @2
Eq:=Ti Rel T2 | Eqx N\ Eq2




Confidentiality

Has; (X) €A Receive; ; (S,E)€ A X € {E}
H1 all ( v H2 all ( v
At Hasi" (X) At Has}" (X)
H3 Compute, (X' = T) cA H Spotcheck; ; (X, E) € A
At Has™ (X') A Has;™ (X)

Dep, (X, {Xl, .. X"}) for all I € [1,n], A+ Has* (X'l)

A+ Has™ (X')
He None of the pre-conditions of H1, H2, H3, H4, or H5 holds for X or any X
At Has!°"* (X' )

H5

+ coherence and
structural rules

I@W—



Integrity

= Spotcheck; ; (Xx, E) € A Eq€E K1 Compute, (X'~= T) €A
A+ B;(Eq) AFKi(X =T)
K3 Verif: 7! (Pmofj(E)) €A Eq€FE Ko Check; (E) € A Eq€ FE
A+ K,(Eq) A+ K,(Eq)
4 Verif, (Proofj(E')) € A Attesty(E)€EE Trust;z, € A Eq€e FE
A+ K;(Eq)
. Verif,"**** (Attest;(E)) € A Trust;; €A Eq€E KBA - Ki(Eq)
A+ K,(Eq) A+ Bi(Eq)
. EviBg, forall Bge B, A+ Ki(Eq)
A Ki(Eg) + coherence and
Bo E>; Eqy for all Eqe E, A+ B;(Eq) structural rules
A+ Bi(Eqy)

I"'m’“’—



Semantics properties

Trace-based semantics
- set of compatible traces of events
- events allowed if instantiation of architectural primitives
except for computations
- events modify state of knowledge of actors




