

Privacy and Recommendation Exploring the Tradeoffs

Davide Frey

joint work with Antoine Rault as well as Anne-Marie Kermarrec, Rachid Guerraoui, François Taiani, Jingjing Wang

> ASAP Team Inria Rennes

Pervasive Recommendation

- Popular tool to
 - address information overload
 - target advertising
 - Identify interesting content

Google

A Brief Recommender Taxonomy

- Content-based filtering
 - Exploit text-analysis, image processing
 - Limited privacy issues
- Collaborative filtering
 - Trace similarities between user interests
 - Memory based
 - User Based: Group users based on interesting items
 - Item Based: group items based on interested users
 - Model based
 - Bayesian, latent semantic models, SVD...
 - All need to combine the preferences of many users

Inherent Privacy Tradeoff

- Recommending requires information about users
- Users wish to protect their information from
 - Big Brothers (the recommender)
 - External Actors
 - Users

Architectures For Recommendation

removes big brother, but ...

This Talk

• A technique to improve privacy in decentralized collaborative filtering [to appear DSN 15]

 Analysis of an attack in centralized or decentralized collaborative filtering [to appear EuroSec 15]

Peer-to-Peer Collaborative Filtering

Peer-to-Peer Collaborative Filtering

Build Knn graph through epidemic protocols

- RPS builds a random topology
 - Continuously provides new information
- Clustering identifies nearest neighbors
 - Similarity metric: e.g. cosine
- Recommendation based on neighbors' ratings

Key Privacy Leak: Similarity Computation

Computing similarities requires

knowledge of each other's profiles

Replace big brother by many little brothers

Attacker Model

- Goal: Discover a target user's interests
- Restricted active adversary
 - Passive information gathering
 - Some active steps:
 - Tap unencrypted communications
 - Try to bias multi-party computations
 - Unlimited similarity computations
- No collusion, no Sybil attack

Hide and Share

Main Insight: Landmark-based similarity

• Indirectly compare user profiles by exploiting their similarities with randomly generated profiles (landmarks)

Hide and Share Requirements

- Computation Confidentiality
- Landmark-profile independence
- Fair Landmark generation
- Time-independent information release

Computation confidentiality

Attach Public Key to gossip messages

Generate secret key to exchange data for similarity computation

Landmark-profile Independence

- Need to generate random landmarks
- Need a way to describe the profile space!

- Represent profiles as binary vectors
 - Profile is a set of items
 - Compact profile in the form of bloom filters
 - Only count "liked" items (rating>threshold)

Fair Landmark Generation

- Need common seed
 - Bit-commitment blum's protocol

P1 and P2 flip a coin P1 sends f(conc(result, nonce)) P2 reveals result to P1 P1 reveals result to P1 If same result -> bit = 1

Time-independent information release

- Generate landmarks using common seed
- Store seed for future use
 - Will recompute the same landmarks the next time it meets peer.
- Overhead -> one seed per peer

A and B's first meeting

nría

Set up secure communication channel

A and B's first meeting

Set up secure communication channel Agree on common seed

A and B's first meeting

Set up secure communication channel

Agree on common seed

Derive L random profiles (landmarks) using the seed

A and B's first meeting

Set up secure communication channel

Agree on common seed

Derive L random profiles (landmarks) using the seed

Compute similarity with the landmarks

A and B's first meeting

Set up secure communication channel

Agree on common seed

Derive L random profiles (landmarks) using the seed

Compute similarity with the landmarks

Cosine similarity of coordinate vectors

A and B meet again

Derive L random profiles (landmarks) using the seed Compute similarity with the landmarks Cosine similarity of coordinate vectors

Evaluation

- MovieLens: movies recommendation datasets
- **Jester**: jokes recommendation dataset

	nb users	nb items	rating range
ML-100k ¹	943	1,682	1:5 (integers)
$ML ext{-}1M^1$	6,040	3,900	1:5 (integers)
Jester ²	24,983	100	-10:10 (continuous)

¹MovieLens: http://grouplens.org/datasets/movielens/ ²Jester: http://eigentaste.berkeley.edu/dataset/

Evaluation

1- Split dataset randomly

Testing	Training
20%	80%

- 2- Use training set to fill profiles
- 3- Generate recommendations and check against training set

Metrics

Recall = Good / Relevant

Precision = Good / Recommended

Recommendation Quality

Neighborhood Quality

(nría_

Privacy: Profile Reconstruction

Profile Reconstruction Attack

- Infer target profile from landmark similarities
- Guess
- items that form the target compact profile
 - Assumption: The attacker knows all the item signatures
- Attack:
 - Consider closest landmark profile as target profile
 - Guess all items that march target profile

Privacy

- How to measure privacy?
 - Simulation: set score
 - G = guessed profile
 - P = peer profile

$$\operatorname{SETSCORE}(G, P) = \frac{|G\Delta P| - |G \cap P|}{|G \cup P|}$$

- Range [-1, 1]
 - -1 = exact and complete guess
 - 1 = completely wrong guess

Setup

- Baseline: Randomized profiles
 - Apply random perturbation to compact profiles
 - Varying percentage of randomized bits (5% to 100%)
- Hide and Share configuration
 - Vary landmarks between 2 to 100

Bandwidth Consumption

Results

Storage Space

Leakage Analysis

- Leaked Information
 - Let M be landmark matrix
 - Let D(M) be the number of non-zero rows in M
 - L information loss

$$\mathcal{L} \le n - \frac{1}{2^n} \sum_{D(M)} \binom{n}{D(M)} (\rho_1)^{D(M)} (1 - \rho_1)^{n - D(M)} T(D(M)).$$

$$\rho_1 = p(\vec{r} \neq \vec{0}) = 1 - (1 - \eta)^m$$

- η probability of element in M being 1
- ho_1 probability of having a non-zero row in M

Conclusion

- Recommendation
 - Useful
 - But at odds with privacy
- Data discoverable also through indirect means
- Research directions
 - Distinguishing information: to keep private, not to keep private (not necessarily personal data)
 - Let users choose what they share with whom

merci

LIEU LOCALISATION **WWW.inria.fr**

SetScore

SETSCORE
$$(G, P) = \frac{|G\Delta P| - |G \cap P|}{|G \cup P|}$$

