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Scope

Privacy for LBS

Reducing accuracy
Goal: limited semantic inference
(not anonimity)

Utility
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Privacy Definition

Mechanism J

x — M — z
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Privacy Definition

Mechanism

x — M — z

DP: Differential Privacy

Plz|x] <ePlz]|x] VX . x~x

[Dwork, McSherry, Nissim, Smith: Calibrating noise to sensitivity in private data analysis. TCC’06]
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Privacy Definition

Mechanism
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DP: Differential Privacy
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Privacy Definition

Mechanism
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DP: Differential Privacy
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Privacy Definition

Mechanism

x — M — z

DP: Differential Privacy

Plz| x] < e &Pz | ¥ Vo, X' x ~ X!

[Dwork, McSherry, Nissim, Smith: Calibrating noise to sensitivity in private data analysis. TCC*06]

dy-privacy

Plz|x] <Pz |¥]  Vx X

[Chatzi is, Andres, Bordenabe, Palamidessi dening the Scope of Di ial Privacy Using Metrics. PETS’13]




Geo-indistinguishability

Metric: scaled Euclidean

da(x, -x,) = e-dg(x, -x’)

Mechanism: Planar Laplacian

[Andrés, Cl i is, P i i: Geo-indisti

ial privacy for location-based systems. CCS’13]

Rue Saint-Sulpice
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Family picture

d -privacy

Differential Privacy J

geo-indistinguishability




Family picture

d -privacy

Differential Privacy J

geo-indistinguishability
OptQL
Predictive




(In)Distinguishability Metric

0 0
What is it that you want to be ‘tr “ a“‘a

similar to?

( how much? ) &



Euclidean Metric

@ Space is privacy

@ ¢ tunes how much
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Euclidean Metric

@ Space is privacy

@ ¢ tunes how much

Requirement

I want to be indistinguishable from a certain amount of space.

req(l)
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Problems

@ Space is not necessarily privacy...

o Different areas offer different level of privacy
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Problems

@ Space is not necessarily privacy...
o Different areas offer different level of privacy




OSM enriched Grid

OpenStreetMap: buildings + (POIs x 3)

ellesaint-Clovd.

Vaucresson,

Meudon
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Privacy Requirement

Requirement
I want to be indistinguishable from a certain amount of privacy mass. J

We use a quadratic curve (much like for space).
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Building a metric satisfying the requirement

Graph-based algo:

o start with a disconnetted graph
@ interate over all nodes

> compute mass
» add an edge with [ = req™ ' (mass)

e westopatl'
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Exponential Mechanism

Plz|x] ~ e dx(x?)



Exponential Mechanism

Plz|x] ~ e dx(x3)
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Exponential Mechanism

Plz|x] ~ e X3
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Evaluation

[Shokri, Theodorakopoulos, Boudec, Hubaux. Quantifying location privacy. S&P’11]

Expected Error (m)
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o Compare Privacy as Adversarial Error
@ Gowalla and Brightkite datasets
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Fences

@ linear growth of epsilon

e fences for recurrent places
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On the practicality of our method

Preprocessing
@ query osm (highly parallel)
@ normalize
@ add fences

@ build metric (sequential)

On the phone

@ download portion of the map

@ compute pdf

o draw




Tiled Mechanism

Use different € in a private way.
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