DatSha : A Data Sharing Algebra
for Access Control Plans

Athanasia Katsouraki'-2, Luc Bouganim?2,
Cedric Eichler3, Benjamin Nguyen?:3

'DAVID, 2Inria Saclay, 3LIFO / INSA CVL

in EDBT 2015
ISN Valdo Project

Context

» Data sharing in Online Social Networks (OSN) is limited
— Possibilities to define different circles
— Publishing limited to certain circles

—> Difficulty to publish simultaneously to several circles with different granularities

Our objective : Define an algebra to
— Define Access Control Plans (ACP)
— Modify, Combine, Factorise and Share ACPs

-> Algebra Definition

- Let advanced users share their ACPs with neophyte users
- Let advanced users define their ACPs with XQuery (3.0)
- Let neophyte users better understand access control !! (cf AC by example)

Example :
Alice wants to share a set of photos with her family,
photos with no metadata with her close friends,
photos without faces (and without metadata) in a reduced definition with her acquaintances,
and does not want to share anything with anyone else.

Application : Monetize Personal Data

Another application : the ACP
marketplace

« Data Consumers (e.g. private companies) are
interested in specific queries (e.g. relational or
XQueries)

 Running example

Find the most photographed place on earth. &
this intension is described by the data consumer

- DC post queries and users decide (or not) to
answer.

The ingredients

* An AC model
» The difficulty of writing AC rules

 The XQuery language, and an intensional
description of queries

An Access Control Plan (ACP) defined by a
succession of polymorphic operators on an initial
XML document.

What kind of access is given 7

* Access to atomic information = a document path
+ an XPath

« Accesstoan ACP

* The possibility to constructa new ACP using
existing access + operators (including calls to
external functions).

Computation of functions is assumed safe.

E.g. Alice grants to bob the right to call
GPS2Country(//GPSCoordinates/X,

//GPSCoordinaz&
Uses Alice’s AC rights

The ACP marketplace

« Users publish ACPs (=workflows)
« Creator explains the ACP

« Users (maybe others comment on the ACPs + ACP
intension)

« Users rank ACPs

Simplify AC definition for neophyte users.
—> easier to understand ACPs
—> easier to reuse existing ACPs (if they trust ACP owner)

ACP Example

| <fil Spec>=.jpg<fil Spec>

Input file
0'! !oe
P

<imgPath=

<50t
<path=ingl.jpg</path >
<path=img2.|pg</path = tmpl
<fspt>
<image> 8 : foath ad hoe
<imgPath=imgl.jpes</path=>
. <fimage> tmp2 4
<sot> <images . [ExtractMeta]
<ingPath=imgl.jpe</path= X0
<dates01/02/15</date> Query
<gps> tmp3
<x >33 2356< > v
<set> <image> el [Fuzzy]
<ingPath=imgl.jpe</path= XOue
<dafe>01/0271 5/ date > — Quary
<gps> i,
. < =43 24 S ¥
<50t <image s - [Project]
<ingPath>imgl.jpg</paths> XOuory
<onS>
< =43 24 S np5
<set= <tuple= <gps> [GrouP]
<x =43 24< S <y =2 3 BR<fy= XOuery
<fgps> < -
<5t <images> tmpb

<set= <tuple= <gps>
<x >33 24 S <y »2 3 BR< >
>

</ops
<n€BImage> 2 </mblmage>

v
[Aggregate]
Oy

Quiput file

(c) XML input, temporary and result files

(d) ACP tree

Alice wants to participate in a survey

fo determine the most photographedplace
on Earth, which can be done by computing a
‘fuzzy” location of all her photos, where the

“fuzzy” location is defined by GPS coordinates
and an error bar

e.g. X=45.23+/-0.01Y=27.67+/-0.01.

ACP definition

 An ACP = a sequence of operators (there is not
necessarily just one linear sequence)

» Operator signature (Typecheckingis possible):
— Input = xml file
— Qutput = xml file
» Operatorimplementation
— Ad hoc
— XQuery 3.0

— Combination operators (e.g. n-ary join : takes n files
and produces 1 output)

Operator definition

=operator OperatorType="project" =

[=params=]

[<Input name ="target”=/setimage </input> | —
[=input name ="keep"=1imgPath =/input=]
<input name ="keep"=gps <finput=

Operator's implementations depends on the targeted object (polymorphism

Allows specifying several sets of parameters (n-ary operators)

Specifies the part of the XML input impacted hy this operator {(tamet)

-|Specific parameters (depends on the operaton

The project operator, definedin the DatShalanguage,
implemented using XPath & XUpdate

Operator Detalls

| <fil Spec>*.jpg<fil Spec> Input file
<50t
<path=ingl.jpg</path > ad hoc
<path=img2.|pg</path > tmol
<fspt> P
<image> S foath ad hoe
<imgPath=imgl.jpe</path>
<fimagc> pasrp mpz |
<50t <inage> . [ExtractMeta]
<imgPath=imgl.jpg</path= v
<date=01/02715¢/ date > ey
<Ops> tmp3
<x>33.2356< %> ¥
<set> <image> T rnenE o [Fuzzy]
<imgPath=imgl.jpe</path= .
e 0108 TSt ate — XQuesy
<gps> i,
- <x =43, 24 S ¥
<set> <image> - [Project]
<ingPath>imgl.jpg</paths> XOuory
<ops>
<x>43. 24 tmph
<set= <tuple= <gps> [Group]
y <x =43 24« S <y =23 By XQuory
<jops> o< -
<set> <image> tmph

<imgPath= ...

v
[Aggregate]

<set= <tuple> <gps>

< Ops
<n1>lmage> 2 </mblmage>

<y >33 24 fe =<y =23 Bl fy>
-

Oy
Quiput file

(c) XML input, temporary and result files

(d) ACP tree

FileSearch: replaces a <fileSpec/= with jokers in a set of file paths looking
recursively or not {input "mode") in the directory indicated by input "target”
every <fileSpec/= should be replaced by a set of path.

PathTolmage: is an operator that replaces every occurrence of a path by
an image (an xsd type). An image is at least a <imgPath/> to an "image"
file, 1.e., a |pg, png, gf, etc.... Initially the image type only includes the
<imgPath/> but metadata can be added using the ExtractMeta operator.

ExtractMeta: replaces every occurrence of an image by the same image
(every field is copied), and adds metadata that can be extracted from the
actual file (e.q. location information embedded in the image).

Fuzzy: is an operator that can be applied to many types. The global
behavior is to replace any occurrence of the target by fuzzy values, the
precision being informed by the "precision” input, which can be an XPath.

Project: this operator is used like the relational algebra IT operator. It
replaces the target subtree by the same subtree in which it keeps only the
elements {or subtrees) that are mentioned in the "keep" parameters.

Group: replaces the "target" subtree by a restructured one which must be
a set. It constructs a <set> of <tuple=s, each containing n+1 elements
(where nis the number of "groupBy" elements in the operator specification,
in this example, n = 1). The last element of the tuple is a set of elements
that share the same value of groupBy (here a set of image having the
same GPSvalue). This operator is implemented by XQuery 3.0. Group By.

Aggregate : The aggregate operator replaces a set of elements ("target”
input) by an aggregate value having the "Agghame” name and applying
the " AggOperation”, which in this case is the XQuery function fn:count().

SEEACP.XMLFILE

Impact

« Simplification of the definition and
combination of operators

* Possibility to monetize some ACPs = pay

for the results of users who execute a
given ACP

What about privacy 77

* OK to execute monetized ACPs but | want
to protect my data using an anonymity
model (e.g. k-anon)

-> Easy to compose ACPs with privacy
preserving workflows (defined & scored by
users)

What metadata for an ACP ?

* Precise Information value
* Privacy score

* Anonymization and degradation schemes
(both for data & pricing)

ACP modification

* Due to the fact operators form an algebra, we can statically propose
ACP modifications that :

— Degrade (or not) the result
— Improve the privacy of the computation or the result

« Each user can define locally ACPs (as in virtual private DBs) that will
be executed before any other ACP, or that will be executed before
specific function calls

« |tis also possible to define global constraints (queries) that will
restrict the publication of data

- We want to be able to compute the quality of the result (for pricing)

- We want to be able to compute the quality of the anonymisation (for
privacy)

- The computation must take into account all the participants

How to correctly compute all this ?

« Example:

Each userhas a HAVING COUNT(*) > K,
condition

e Reverse evaluation:

— Suppose all individuals answer and remove all data
that does not respect the conditions

— Iterate until fixedpoint is reached

— Works if : monotonicity (condition must stay false
when tuples are removed)

How to securely compute all this ?

Use Trusted Cells paradigm ©
(See previous SMIS presentations)

Open questions

Data & query pricing

Risk evaluation

ACP optimisation

Multi-criteria optimization (data + privacy)

Questions ?

