Log Analysis for Data Protection Accountability (FM2014)

Denis Butin and Daniel Le Métayer
Context & Motivation

Privacy Policies & Abstract Events

Log Specification & Compliance

Accountability Properties

Accountability Process

Conclusion & Future Work
Context

- Principle of accountability introduced 30 years ago (OECD), more and more popular — 2009 consortium, soon in European Data Protection Regulation

- Key idea: data controller must not only comply with data protection rules but also *demonstrate* compliance

- Accountability often used vaguely, need to distinguish different levels (policy / procedures / practice)

- Here, focus on accountability of practice
Motivations

- Concretely, need to clarify what are the accounts — logs. Good log design not trivial (cf DUMA13 paper)
- Also need to clearly state obligations — privacy policies
- Entire accountability process must be made explicit and be accurate wrt system execution, also include informal aspects
- Formal approach to clarify and integrate all this
- Other issue: gap between levels of abstraction: personal data values vs system memory addresses, duplicate data, etc
In this work:

- Framework for accountability of practice
- Compliance of system-level logs versus compliance of abstract traces — correctness
- Integration of formal framework with overall process and with manual/informal verifications
Assume that all personal data received by data controller has attached policy (sticky policies)

- Consider traces and logs on side of the controller

- Privacy policies defined as

\[
\text{Policy} = \text{Purposes} \times \text{Time} \times \text{Time} \times \text{Contexts} \times \text{FwPolicy}
\]

\[
\pi \in \text{Policy} \quad \pi = (ap, dd, rd, cx, fw)
\]

- Purposes, global deletion delay, DS request compliance delay, contexts, data forwarding policy

- Example:

\[
\pi = (\{\text{Marketing, Statistics}\}, 180d, 60m, \{\text{Location_Europe}\}, \uparrow)
\]
Abstract events (1/2)

- Describe events at level of personal data, abstracting away from system internals (pointer references, duplicates, etc)
- Expressed intuitively wrt privacy policies
- Events: Data Disclosure, Deletion request, Access request, Deletion, Third party deletion order, data forwarding, use of data for specific purpose, break-glass event, context definition (extensible list, e.g. can add notifications, updates, third party update orders . . .)
- Trace = sequence of abstract events
Abstract events (2/2)

- Abstract states: \(S_A : \text{Entity} \times \text{Type} \rightarrow \text{Time} \times \text{Entity} \times \text{Value} \times \text{Policy} \times \mathcal{P}(\text{Entity} \times \mathbb{N}) \times \mathcal{P}(\text{BGtype} \times \text{BGcircumstances} \times \text{Time}) \)
 \((ds, \theta) \mapsto (t, or, v, \pi, \text{receivers}, bg)\)

- origin \(or = \) entity from which most recent version of data comes from; \(\text{receivers} = \) set of third parties that received the data, together with event index

- \(bg = \) set of triples containing information about break-glass events

- State expanded for current context

- Semantics defined for abstract events, using abstract state

- Trace compliance properties stated
Log events describe actual behaviour of system — small number of general purpose low-level operations such as receiving data, sending it, reading, copying, deleting . . .

Semantics passed through parameters

“Personal-data-free logs”: No data value in parameters of log events, but references. Data subjects identities and data categories are still recorded, but not actual data values

Logs are sequences of log events
Log events (2/2)

- Concrete state defined:
 \[S_C : \text{Reference} \rightarrow \text{Time} \times \text{Type} \times \text{Entity} \times \mathbb{N} \times \text{Entity} \times \text{Policy} \times \mathcal{P}(\text{Entity} \times \mathbb{N}) \times \mathcal{P}(\text{BGtype} \times \text{BGcircumstances} \times \text{Time}) \]
 \[\text{ref} \mapsto (t, \theta, ds, j, \text{or}, \pi, \text{receivers}, bg) \]

- Log compliance properties stated

- Example: Deletions yield third party deletion requests, sent between the last forwarding of the data and its deletion:
 \[L_i = (\text{Delete}, t', \text{ref}) \land \text{State}_C(L, i - 1)(\text{ref}) = \]
 \[(t, \theta, ds, \text{or}, \pi, \text{receivers}, bg) \implies \forall (t_p, l) \in \text{receivers}, \]
 \[\exists k \mid \exists t'' \mid L_k = (\text{Send}, \text{DeleteOrder}, t'', t_p, ds, \theta) \land \]
 \[k \in \lceil \alpha, i \rceil \text{ with } \alpha = \max\{n \mid (t_p, n) \in \text{receivers} \} \]
Accountability properties

- Relation between abstract states and concrete states
- Relation between traces and logs
- Can then express correctness property relating traces and logs:
 \[\text{Compliant}_C(L) \land \text{Abstract}_L(L, \sigma) \implies \text{Compliant}_A(\sigma) \]
- No race condition: deletion requests are fulfilled after a finite delay
- If we add update events, same property for update requests
Accountability process

- Manual checks by independent auditors complement automatic verifications
- General system architecture verification: check that logs reflect actual system execution. Done manually because building formal model of entire system is huge task. Formal framework gives guidelines on log event format.
- Specific verifications related to outcome of log analysis — break-glass event circumstances, reasons for use of data for specific purpose, etc
- Audit for accountability cannot provide absolute compliance guarantee, goal is to make cheating more difficult
- In practice, data protection authority controllers or auditors do not check all logs but explore logs for specific types of data
Conclusion

- Accountability is incentive for data controllers to take obligations more seriously
- Important to reconcile different meanings of the principle and to integrate formal with informal approach
- Privacy policy and events format in this work: typical but not set in stone
- Other important topic: log integrity/confidentiality
- Possible to get meaningful compliance checking without storing values of personal data in logs
- Need to consider data aggregation/merging